checked by TT

MEMORANDUM

TO:

Mr. Addison Rice

Anderson, Mulholland and Associates

DATE: February 25, 2016

FROM: R. Infante

FILE: 1602029

RE:

Data Validation Air samples SDG: 1602029

SUMMARY

Full validation was performed on the data for several gas samples analyzed for naphthalene and one sample analyzed for several vocs by method Compendium Method TO-17: Determination of Volatile Organic Compounds in Ambient Air Using Active Sampling Onto Sorbent Tubes, January 1999. The samples were collected at Bristol Myer Squib, Humacao, PR site on January 30-31, 2016 and submitted to Eurofins Air Toxics, Inc. of Folson, California that analyzed and reported the results under delivery groups (SDG) 1602029.

The sample results were assessed according to USEPA data validation guidance documents in the following order of precedence: Compendium Method TO-17. Determination of Volatile Organic Compounds in Ambient Air Using Active Sampling Onto Sorbent Tubes, January, 1999. The QC criteria and data validation actions listed on the data review worksheets are from the primary guidance document, unless otherwise noted.

In general the data is valid as reported and may be used for decision making purposes. The data results are acceptable for use. Several VOCs were qualified as estimated (j) in sample 1602029-13A due to concentration exceeding calibration range or due to peak saturation that did not allowed proper integration. Laboratory qualified the analytes as (E) concentration over calibration range and (S) saturated peak.

SAMPLES

The samples included in the review are listed below

Client Sample ID	Lab. Sample ID	Collected Date	Matrix	Analysis
B30-1IA013016	1602029-01A	01/30-31/16	Air	Naphtahlene
B30-2IA013016	1602029-02A	01/30-31/16	Air	Naphtahlene
B30-3IA013016	1602029-03A	01/30-31/16	Air	Naphtahlene
B30-4IA013016	1602029-04A	01/30-31/16	Air	Naphtahlene
B30-4IAD013016	1602029-05A	01/30-31/16	Air	Naphtahlene
B30-5IA013016	1602029-06A	01/30-31/16	Air	Naphtahlene
B3042AA013016	1602029-07A	01/30-31/16	Air	Naphtahlene
B42-11A013016	1602029-08A	01/30-31/16	Air	Naphtahlene
B42-2IA013016	1602029-09A	01/30-31/16	Air	Naphtahlene
B42-3IA013016	1602029-10A	01/30-31/16	Air	Naphtahlene -

Client Sample ID	Lab. Sample ID	Collected Date	Matrix	Analysis
B3042-FB1IA	1602029-11A	01/31/16	Air	Naphtahlene
B3042-FB2SSV	1602029-12A	01/31/16	Air	Naphtahlene
B30-1SSV013116	1602029-13A	01/31/16	Air	VOCs
B30-2SSV013116	1602029-14A	01/31/16	Air	Naphtahlene
B30-3SSV013116	1602029-15A	01/31/16	Air	Naphtahlene
B30-4SSV013116	1602029-16A	01/31/16	Air	Naphtahlene
B30-4DSSV013116	1602029-17A	01/31/16	Air	Naphtahlene
B30-5SSV013116	1602029-18A	01/31/16	Air	Naphtahlene
B42-1SSV013116	1602029-19A	01/31/16	Air	Naphtahlene
B42-2SSV013116	1602029-20A	01/31/16	Air	Naphtahlene
B42-3SSV013116	1602029-21A	01/31/16	Air	Naphtahlene

REVIEW ELEMENTS

Sample data were reviewed for the following parameters, where applicable to the method

- o Agreement of analysis conducted with chain of custody (COC) form
- o Holding time and sample preservation
- o Gas chromatography/mass spectrometry (GC/MS) tunes
- o Initial and continuing calibrations
- o Method blanks/trip blanks/field blank
- o Absorbent tube desorption efficiency
- o Surrogate spike recovery
- o Internal standard performance and retention times
- o Field duplicate results
- o Laboratory control sample/laboratory control sample duplicate (LCS/LCSD) results
- o Quantitation limits and sample results

DISCUSSION

Agreement of Analysis Conducted with COC Request

Sample reports corresponded to the analytical request designated on the chain-of-custody form.

Holding Times and Sample Preservation

Sample preservation was acceptable.

Samples analyzed within method recommended holding time.

GC/MS Tunes

The frequency and abundance of bromofluorobenzene (BFB) tunes were within the QC acceptance criteria. All samples were analyzed within the tuning criteria associated with the method.

Initial and Continuing Calibrations

VOCs and Naphthalene (Method TO-17)

Initial calibration meets the method performance criteria. Ongoing accuracy of the instrument was determined by the analysis of a continuing calibration standard. Continuing calibration meets the method performance criteria.

Method Blank/Trip Blank/Field Blank

Target analytes were not detected in laboratory method blanks above the method reporting limits.

No trip/field blank analyzed with this data package.

Surrogate Spike Recovery

The surrogate recoveries as per method TO-17 were within the laboratory QC acceptance limits in all samples analyzed.

Internal Standard Performance

VOCs and Naphthalene

Samples were spiked with the method specified internal standard. Internal standard are performance and retention times met the QC acceptance criteria in all sample analyses and calibration standards.

Laboratory/Field Duplicate Results

Field duplicates were analyzed as part of this data set for naphthalene. Target analytes meet the RPD performance criteria for analytes 5 x SQL.

For VOCs no field/laboratory duplicates were analyzed. LCS/LCSD results used to assess precision; RPD meet the method performance criteria.

LCS/LCSD Results

LCS/LCSD (blank spike) analyzed by the laboratory associated with this data package; recoveries and RPD within laboratory control limits.

Quantitation Limits and Sample Results

Dilutions were not performed on TO-17 samples.

Calculations were spot checked.

Certification

The following samples 1602029-01A; 1602029-02A; 1602029-03A; 1602029-04A; 1602029-05A; 1602029-06A; 1602029-07A; 1602029-08A; 1602029-09A; 1602029-10A; 1602029-11A; 1602029-12A; 1602029-13A; 1602029-14A; 1602029-15A; 1602029-16A; 1602029-17A; 1602029-18A; 1602029-19A; 1602029-20A; and 1602029-21A were analyzed following standard procedures accepted by regulatory agencies. The quality control requirements met the methods criteria except in the occasions described in this document. The results are valid.

Rafae Infante

Chemist License 1888

Client Sample ID: B30-1IA013016

Lab ID#: 1602029-01A EPA METHOD TO-17

File Name:	18020310	Date of Extraction: NADate of Collection: 1/31/16 1:35:00 AM
Dil. Factor:	1.00	Date of Analysis: 2/3/16 04:35 PM

	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ng)	(ug/m3)	(ng)	(ug/m3)
Naphthalene	1.0	0.11	5.0	0.54

Air Sample Volume(L): 9.30 Container Type: TO-17 VI Tube

Surrogates	%Recovery	Method Limits
Naphthalene-d8	90	50-150

Client Sample ID: B30-2IA013016

Lab ID#: 1602029-02A EPA METHOD TO-17

File Name: 18020311 Date of Extraction: NADate of Collection: 1/31/16 6:42:00 AM
Dil. Factor: 1.00 Date of Analysis: 2/3/16 05:13 PM

 Compound
 Rpt. Limit (ng)
 Rpt. Limit (ug/m3)
 Amount (ng)
 Amount (ug/m3)

 Naphthalene
 1.0
 0.079
 0.98 J
 0.077 J

Air Sample Volume(L): 12.6

J = Estimated value.

Container Type: TO-17 VI Tube

		Method
Surrogates	%Recovery	Limits
Naphthalene-d8	88	50-150

Client Sample ID: B30-3IA013016

Lab ID#: 1602029-03A EPA METHOD TO-17

18020312 F	hate of Extraction:	NADate of Collection:	1/31/16 10:42:0	nΑ

Dil. Factor:	1.00	1.00 Date of Analysis: 2/3/16 0			
Compound	Rpt. Limit (ng)	Rpt. Limit (ug/m3)	Amount (ng)	Amount (ug/m3)	
Naphthalene	1.0	0.068	1.4	0.095	_

Air Sample Volume(L): 14.8 Container Type: TO-17 VI Tube

File Name:

		Method
Surrogates	%Recovery	Limits
Naphthalene-d8	95	50-150

Surrogates

Naphthalene-d8

Client Sample ID: B30-4IA013016

Lab ID#: 1602029-04A EPA METHOD TO-17

Rpt. Limit	Rpt Limit	Amount	Amount
(ng)	(ug/m3)	(ng)	Amount (ug/m3)
1.0	0.068	2.3	0.16

%Recovery

99

Limits

Surrogates

Naphthalene-d8

Client Sample ID: B30-4IAD013016

Lab ID#: 1602029-05A EPA METHOD TO-17

mpound	Rpt. Lin	•	Amount	Amount
-	(ng)	(ug/m3)	(ng)	(ug/m3)
phthalene	1.0	0.069	2.5	0.18
Sample Volume(L): 14.4 ntainer Type: TO-17 VI Tube				

%Recovery

97

Limits

Client Sample ID: B30-5IA013016

Lab ID#: 1602029-06A

EPA	MET	HOD	TO-17	7
------------	-----	-----	-------	---

Dil. Factor:	18020315 Date of Extraction: NADate of Collection: 1/3 1.00 Date of Analysis: 2/3/				
Compound	Rpt. Limit (ng)	Rpt. Limit (ug/m3)	Amount (ng)	Amount (ug/m3)	
Naphthalene	1.0	0.067	1,2	0.082	
Air Sample Volume(L): 14.9 Container Type: TO-17 VI Tube					
Surrogates		%Recovery		Method Limits	
Naphthalene-d8		92		50-150	

Air Toxics

Client Sample ID: B3042AA013016

Lab ID#: 1602029-07A EPA METHOD TO-17

File Name: Dil. Factor: Compound	18020316 Date of Extraction: NADate of Collection: 1/30/16 5:55:00 1.00 Date of Analysis: 2/3/16 08:25 PM			
	Rpt. Limit (ng)	Rpt. Limit (ug/m3)	Amount (ng)	Amount (ug/m3)
Naphthalene	1.0	0.068	Not Detected	Not Detected
Air Sample Volume(L): 14.6 Container Type: TO-17 VI Tube				
Surrogates		%Recovery		Method Limits

61

Air Toxics

Client Sample ID: B42-1IA013016

Lab ID#: 1602029-08A EPA METHOD TO-17

File Name: Dil. Factor:	18020317 Date of Extraction: NADate of Collection: 1/31/16 11:20: 1.00 Date of Analysis: 2/3/16 09:03 PM			
Compound	Rpt. Limit (ng)	Rpt. Limit (ug/m3)	Amount (ng)	Amount (ug/m3)
Naphthalene	1,0	0.067	1.7	0,12
Air Sample Volume(L): 14.9 Container Type: TO-17 Vi Tube				
Surrogates		%Recovery		Method Limits

84

Air Toxics

Client Sample ID: B42-2IA013016

Lab ID#: 1602029-09A EPA METHOD TO-17

File Name: Dil. Factor:	18020318 Date of Extraction: NADate of Collection: 1/31/16 11:08:00 A 1.00 Date of Analysis: 2/3/16 09:41 PM			
Compound	Rpt. Limit (ng)	Rpt Limit (ug/m3)	Amount (ng)	Amount (ug/m3)
Naphthalene	1,0	0.068	1.5	0.10
Air Sample Volume(L): 14.8 Container Type: TO-17 VI Tube				
Surrogates		%Recovery		Method Limits

99

Client Sample ID: B42-3IA013016

Lab ID#: 1602029-10A EPA METHOD TO-17

File Name: Dil. Factor:	18020329 Date of Extraction: NADate of Collection: 1/31/16 11:15:00 1.00 Date of Analysis: 2/4/16 09:20 AM			
Compound	Rpt. Limit (ng)	Rpt. Limit (ug/m3)	Amount (ng)	Amount (ug/m3)
Naphthalene	1.0	0.068	1.3	0.091
Air Sample Volume(L): 14.8 Container Type: TO-17 VI Tube				
Surrogates		%Recovery		Method Limits
Naphthalene-d8		90	· · · · · · · · · · · · · · · · · · ·	50-150

Client Sample ID: B3042-FB1IA Lab ID#: 1602029-11A

EPA METHOD TO-17

File Name:	18020309 [Date of Extraction: NADate	e of Collection: 1/31	I/16 10:52:00 AM
Dil. Factor:	1.00	Date of Analysis: 2/3/16 03:56 PM		6 03:56 PM
	Rpt. Lim	rit Rpt. Limit	Amount	Amount
Compound	(ng)	(ug/m3)	(ng)	(ug/m3)
Naphthalene	1.0	0.067	0,48 J	0.032 J

Air Sample Volume(L): 14.9

J = Estimated value.

Container Type: TO-17 VI Tube

		Method
Surrogates	%Recovery	Limits
Naphthalene-d8	87	50-150

Client Sample ID: B3042-FB2SSV

Lab ID#: 1602029-12A EPA METHOD TO-17

File Name: Dil. Factor:	18020308 Date of Extraction: NADate of Collection: 1/31/16 10:59:00 AM 1.00 Date of Analysis: 2/3/16 02:52 PM			
Compound	Rpt. Limit (ng)	Rpt. Limit (ug/m3)	Amount (ng)	Amount (ug/m3)
Naphthalene	1.0	0.067	Not Detected	Not Detected
Air Sample Volume(L): 14.9 Container Type: TO-17 Vi Tube				
Surrogates		%Recovery		Method Limits
Naphthalene-d8		91		50-150

Client Sample ID: B30-1SSV013116 Lab ID#: 1602029-13A

EPA METHOD TO-17

File Name:			te of Collection: 1/31/	
Dil. Factor:	1.00	Dat	te of Analysis: 2/4/16	11:53 PM
_	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ng)	(ug/m3)	(ng)	(ug/m3)
Freon 114	14	35	Not Detected	Not Detected
Vinyl Chloride	5.1	13	69	170
1,3-Butadiene	2.2	5.5	Not Detected	Not Detected
Isopentane	5.9	15	370	920
Freon 11	11	28	Not Detected	Not Detected
1,1-Dichloroethene	4.0	10	30	74
Methylene Chloride	21	52	15 J	38 J
Freon 113	7.7	19	Not Detected	Not Detected
trans-1,2-Dichloroethene	8.0	20	4.2 J	11 J
1,1-Dichloroethane	4.0	10	15	39
cis-1,2-Dichloroethene	4.0	10	22	55
Hexane	35	88	1300 E 🤰	3200 E
Chioroform	4.9	12	Not Detected	Not Detecte
1,2-Dichloroethane	4.0	10	Not Detected	Not Detected
1,1,1-Trichloroethane	5.4	14	Not Detected	Not Detected
Benzene	6.4	16	270	680
Carbon Tetrachloride	6.3	16	Not Detected	Not Detected
Cyclohexane	6.9	17	1000 E 🤰	2600 E
1,2-Dichloropropane	4.6	12	Not Detected	Not Detected
Trichloroethene	5.4	14	3.1 J	7.8 J
1,4-Dioxane	11	28	Not Detected	Not Detected
2,2,4-Trimethylpentane	9.4	24	23	56
Heptane	8.2	20	220	560
Methylcyclohexane	8.0	20	150	370
1,1,2-Trichloroethane	5.4	14	Not Detected	Not Detected
1-Methyl-2-pentanone	8.2	20	Not Detected	Not Detected
Toluene	7.5	19	18	44
2-Hexanone	8.2	20	Not Detected	Not Detected
Tetrachloroethene	6.8	17	2.1 J	5.3 J
Chlorobenzene	4.6	12	Not Detected	Not Detected
Ethyl Benzene	4.3	11	2500 E 🤰	6200 E
m,p-Xylene	35	87	>38000 S 🧻	>95000 S
o-Xylene	8.7	22	620	1600
Styrene	8.5	21	Not Detected	Not Detected
1,1,2,2-Tetrachloroethane	6.9	17	Not Detected	Not Detected
Cumene	9.8	24	5.1 J	13 J
Propylbenzene	9.8	24	2.2 J	5.6 J
1-Ethyltoluene	9.8	24	Not-Detected	Not Detected
1,3,5-Trimethylbenzene	9.8	24	SOCIAL CONTRACTOR	7.5 J
1,2,4-Trimethylbenzene	29	72 -//	THE SEA	26 J
1,3-Dichlorobenzene	6.0	15/-3	tael Infame	49
1,4-Dichlorobenzene	6.0	15	McNat Deted	Not Detected

Page 1

0091 of 0912

Client Sample ID: B30-1SSV013116

Lab ID#: 1602029-13A EPA METHOD TO-17

ł			
ı	File Name:	11020417	Date of Extraction: NADate of Collection: 1/31/16 12:27:00 PM
ı	Dil. Factor:	1.00	Date of Analysis: 2/4/16 11:53 PM
ш			Date of Fillely 515. Ziwi G 11:00 i M

Compound	Rpt. Limit (ng)	Rpt. Limit (ug/m3)	Amount (ng)	Amount (ug/m3)
1,2-Dichlorobenzene	6.0	15	Not Detected	Not Detected
1,2,4-Trichlorobenzene	15	38	Not Detected	Not Detected
Hexachlorobutadiene	21	52	Not Detected	Not Detected
Naphthalene	1.0	2,5	0,60 J	1.5 J

Air Sample Volume(L): 0.400

J = Estimated value.

E = Exceeds instrument calibration range.

S = Saturated peak; data reported as estimated.

m,p-Xylene was reported from file #11020832, analyzed on 2/9/16 with a dilution factor of 4.00.

Container Type: TO-17 VI Tube

Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	86	50-150
Toluene-d8	119	50-150
Naphthalene-d8	103	50-150

Client Sample ID: B30-2SSV013116

Lab ID#: 1602029-14A EPA METHOD TO-17

File Name:	18020320	Date of Extraction: NADate of Collection: 1/31/16 12:45:00 PM
Dil. Factor:	1.00	Date of Analysis: 2/3/16 10:58 PM

Compound	Rpt. Limit	Rpt. Limit	Amount	Amount
	(ng)	(ug/m3)	(ng)	(ug/m3)
Naphthalene	1.0	2.5	Not Detected	Not Detected

Air Sample Volume(L): 0.400 Container Type: TO-17 VI Tube

		Method
Surrogates	%Recovery	Limits
Naphthalene-d8	82	50-150

Client Sample ID: B30-3SSV013116

Lab ID#: 1602029-15A

EPA METHOD TO-17

File Name: Dil. Factor:	18020321 Date of Extraction: NADate of Collection: 1/31/16 1:04:00 PM 1.00 Date of Analysis: 2/3/16 11:36 PM				
Compound	Rpt. Limit (ng)	Rpt. Limit Amount (ug/m3) (ng)		Amount (ug/m3)	
Naphthalene	1.0	2.5	Not Detected	Not Detected	
Air Sample Volume(L): 0.400 Container Type: TO-17 VI Tube					
Surrogates		%Recovery		Method Limits	
Naphthalene-d8		92		50-150	

Client Sample ID: B30-4SSV013116

Lab ID#: 1602029-16A EPA METHOD TO-17

File Name:	18020322	Date of Extraction: NADate of Collection: 1/31/16 1:33:00 PM
Dil. Factor:	1.00	Date of Analysis: 2/4/16 12:15 AM

CompoundRpt. Limit (ng)Rpt. Limit (ug/m3)Amount (ng)Amount (ug/m3)Naphthalene1.02.5Not DetectedNot Detected

Air Sample Volume(L): 0.400 Container Type: TO-17 VI Tube

		Method
Surrogates	%Recovery	Limits
Nanhthalene-d8	92	50-150

Air Toxics

Client Sample ID: B30-4DSSV013116

Lab ID#: 1602029-17A EPA METHOD TO-17

File Name: Dil. Factor:	18020323 Date of Extraction: NADate of Collection: 1/31/16 1:5			
Compound	Rpt. Limit (ng)	Rpt. Limit (ug/m3)	Amount (ng)	Amount (ug/m3)
Naphthalene	1.0	2.5	Not Detected	Not Detected
Air Sample Volume(L): 0.400 Container Type: TO-17 VI Tube				
Surrogates		%Recovery		Method Limits

92

Client Sample ID: B30-5SSV013116

Lab ID#: 1602029-18A EPA METHOD TO-17

File Name: Dil. Factor:	18020324 Date of Extraction: NADate of Collection: 1/31/16 1:55:00 PM 1.00 Date of Analysis: 2/4/16 01:31 AM				
Compound	Rpt. Limit (ng)	Rpt. Limit (ug/m3)	Amount (ng)	Amount (ug/m3)	
Naphthalene	1.0	2.5	Not Detected	Not Detected	
Air Sample Volume(L): 0.400 Container Type: TO-17 VI Tube					
Surrogates		%Recovery		Method Limits	
Naphthalene-d8		91		50-150	

Summary of Detected Compounds EPA METHOD TO-17

Client Sample ID: B42-1SSV013116

Lab ID#: 1602029-19A

	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ng)	(ug/m3)	(ng)	(ug/m3)
Naphthalene	1.0	2.5	0.52 J	1.3 J

Client Sample ID: B42-2SSV013116

Lab ID#: 1602029-20A EPA METHOD TO-17

Dil. Factor:	1.00 Rnt Li		Date of Analysis: 2	Amount
		710		
File Name:	18020326	Date of Extraction: NA	Mate of Callections	4/24/4¢ 4:29:00 DM

 Compound
 Rpt. Limit (ng)
 Rpt. Limit (ug/m3)
 Amount (ng)
 Amount (ug/m3)

 Naphthalene
 1.0
 2.5
 3.0
 7.5

Air Sample Volume(L): 0.400 Container Type: TO-17 VI Tube

		Method
Surrogates	%Recovery	Limits
Naphthalene-d8	96	50-150

Client Sample ID: B42-3SSV013116

Lab ID#: 1602029-21A

EPA METHOD TO-1	7	
-----------------	---	--

File Name: Dil. Factor:	18020330 Date of Extraction: NADate of Collection: 1/31/16 4:1 1.00 Date of Analysis: 2/4/16 09:59				
Compound	Rpt. Limit (ng)	Rpt. Limit (ug/m3)	Amount (ng)	Amount (ug/m3)	
Naphthalene	1.0	2,5	Not Detected	Not Detected	
Air Sample Volume(L): 0.400 Container Type: TO-17 VI Tube					
Surrogates		%Recovery		Method Limits	
Naphthalene-d8		95		50-150	

TO-17 SAMPLE COLLECTION

Air TOXICS LTD.

CHAIN-OF-CUSTODY RECORD

Sample Transportation Notice

Relinquishing signature on this document indicates that sample is being shipped in compliance with all applicable local, State, Federal, national, and international laws, regulations and ordinances of any kind. Air Toxics Limited assumes no liability with respect to the collection, handling or shipping of these samples. Relinquishing signature also Indicates agreement to hold harmless, defend, and indemnify Air Toxics Limited against any claim, demand, or action, of any kind, related to the collection, handling, or shipping of samples, D.O.T. Hotline (800) 467-4922.

180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA 95630 (916) 985-1000 FAX (916) 985-1020

Page 1 of 3

Project Manager levry Taylor Project Info: Reporting Units: **Turn Around** Time: Collected by: (Print and Sign) Normal Q ppmy P.O. # Company AM AT Email ydqq City Rulese Rush Address 2700 Westere Project # State UY Zip (0591 Sug/m3 Phone 914-251-0400 Project Name BMS VI ma/m3 specify Outdoor Air Soil Vapor Engraved Date of **Start Time End Time Pre-Test** Post-Test Indoor/Outdoor Lab I.D. Field Sample I.D. (Location) or Stamped Collection Volume (hr:min) Flow Rate (hr:min) Flow Rate Temp % RH Tube # (mm/dd/yy) OLA B30-11A013016 60137179 1030 0135 35H/min 230 35 ml/mi 82.5 79 B30-2 TAC13016 G0152248 1035 35ml/min 364/min 12.60 83 M 3642 B30-31 A013016 1042 1042 35ml/MIL 4.8 80 60188144 30-31/16 80 35m1/min OYA B30-4IA013016 30-21/16 1042 1042 35 W/mis 82 60132032 OSA 1042 B30-41AD013016 82 B 1042 60139959 B20-514013016 1055 1055 35 M/min 60144385 1/30-31/16 80 35 ml 36ml/min DAA 30/16 1103 1755 65 86 X B3042 AA 01 3016 60143465 1120 1120 1342-11A013016 60140124 35 ml/min 130-31 DAY. B42-2IA013016 1108 1108 CO137189 10A B42-3IA013016 1115 35 H/min G0145551 1115 1/30-31 Relinquished by: (signature) Date/Time Received by: (signature) Date/Time 506.1.2016 เดิมก 1290 Relinquished by: (signature) Date/Time Received by: (signature) Date/Time un cyclet over Sta lime Relinquished by: (signature) Date/Time Received by: (signature) Date/Time Shipper Name Air Bill # Lab Temp (°C) Condition Custody Seals Intact? Work Order # Usa 1602029 Yes No None Only

TO-17 SAMPLE COLLECTION

(ICS LTD.

CHAIN-OF-CUSTODY RECORD

Sample Transportation Notice
Relinquishing signature on this document indicates that sample is being shipped in compliance with all applicable local, State, Federal, national, and international laws, regulations and ordinances of any kind. Air Toxics Limited assumes no liability with respect to the collection, handling or shipping of these samples. Relinquishing signature also indicates agreement to hold harmless, defend, and indemnity Air Toxics Limited against any claim, demand, or action, of any kind, related to the collection, handling, or shipping of samples. D.O.T. Hotline (800) 467-4922.

180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA 95630 (916) 985-1000 FAX (916) 985-1020 Page 2 of 3

Project Ma	nager lerry laylor	<u> </u>		Proje	ct Info:			Turn Arour	nd Report	ina	ТТ	Ta
Collected t	Dy: (Print and Sign) Verry Caylor	Davi	White St	P.O. #				Time:	nd Report Units: U ppm			
Company_	AM AT Eme		Markey	P.U. #		0)		Normal	Stopby	40,000		
Address 2	100 Westeler Ave City Rucha	ادState U	Y Zip 1054	Projec	rt #			Rush	D μg/m	(AC115)		
Phone 0	14-251-0400 Fax				t Name <u>BM</u>	IS VI	<u>. </u>	specify	− □ mg/r	E16590.	=	
Lab I.D.	Field Sample I.D. (Location)	Engraved or Stamped Tube #	Date of Collection (mm/dd/yy)	Start Time (hr:min)	End Time (hr : min)	Pre-Ter	te Flow Ra		Indoor/Outdo	100 S	Outdoor Air	Soil Vapor Other (
NA-	B3042-FB1TA	60130962	1/31/16	1052	1052				78 8:	2 🔯		30
124	B3042-FB255V	60187158 1	/31/16	1059	1059	/		/	78 82			I
13A	B30-155V013116	60129354	1/31/16	1224	1227	133	133	400	83 79	7 0		30
IGA .	B30-255/013116	60173780	1/31/16	1242	1245	133	133	400	83 99	7 🗀		Á O
1574	B30-355V013116	60135686	1/31/16	1201	1304	133	133	400	४० ४४	, []		1 0
16A.	B30-455/013116	601503851	131/16	1364	1333	133	133	400	79 83	2 🗆		30
174	B30-4055V013116	GO 143423 1	1/31/16	1325	1328	133	133	400	79 82	2 0	D 8	3 🗆
* \8A	B20-555 Vo13116	601436291	/31/16	1352	1355	133	133	400	80 8		O à	40
19A	B42-155V013116	601372461	131/16	1641	1644	133	133	400	83 8	7 0	O à	I
711/	B42-255V013116	60137108	/ /	1625	1628	133	3 133	400	61 78			a 0
Relinquish	ed by: (signature) Date/Time ed by: (signature) Date/Time	2 14/1	by: (signatur	re) Date/Tir 2-2	ne / /	1020	Notes: B30155	5/0131	16 anah	yee All	fer	
Delineralek							wher say	mples A	المراحك	n leu	•	
rieiiiiquiSN	ed by: (signature) Date/Time	Heceived	l by: (signatur	e) Date/Tin	ne		OULY. T	Cpc-7 T	* A_((^)	•		
Leb	Shipper Name Air	BIII #	Ternp	o (°C)	Condition,		Custody Sea	a Intact?	Work	Order	THE REAL PROPERTY.	n in the second
Use	FOGEX		125	78	(2000)	menersomoleke	Yes No	Actual Co.	ALCOHOL: ALL STATE OF SOME STATE OF	olol	e en la constitución de	10271
ST TRATE	-										-	\neg

TO-17 SAMPLE COLLECTION

Air

Sample Transportation Notice
Relinquishing signature on this document indicates that sample is being shipped in compliance with all applicable local, State, Federal, national, and international laws, regulations and ordinances of any kind. Air Toxics Limited assumes no liability with respect to the collection, handling or shipping of these samples. Relinquishing signature also indicates agreement to hold harmless, defend, and indemnify Air Toxics Limited against any claim, demand, or action, of any kind, related to the collection, handling, or shipping of samples. D.O.T. Hotline (800) 467-4922.

180 BLUE RAVINE ROAD, SUITE B **FOLSOM, CA 95630** (916) 985-1000 FAX (916) 985-1020 Page 3 of 3

Collected b	nager levry lay lev Dy: (Print and Sign) Termy Taylor AM AI En O Westlands Are City Proche	nail State	A Dord Lin	Project P.O. #_				Turn Arou Time: Normal	□ p	orting bs: pmv pbv g/m3		
	714-39-1225 Fax_				Name BI	IV 2M		specify	4 702003	1g/m3		
Lab I.D.	Field Sample I.D. (Location)	Engraved or Stamped Tube #	Date of Collection (mm/dd/yy)	Start Time (hr:min)	End Time (hr:mln)	Pre-Test Flow Rate	Post-Te Flow Ra	te Volume	Indoor/0 % RH	utdoor Temp	Indoor Ai	Soil Vapor Other (
211	B42-355V013116	60131913	1/31/16	1607	1610	133	133	400	67	76		
						#11						$\overline{}$
										[
#3 3 F							<u> </u>					
							ļ	-				
ρi										[
											ם כ	
Relinquishe	ed by: (signature) Date/Time 12: ed by: (signature) Date/Time ed by: (signature) Date/Time	Receive	ed by: (signatured by: (signat	1-1-// re) Date/Time	e e	020 A	ones:	for L Report	Japhal Japhal	MDI	الله	
Lab Uše Only	Shipper Name (). AI	r BNI #		p (°C)	Condition GooW		Custody Sea Yes No	secondary with the	Course, Miles Cit	ork Orde		

	Project Number:1602029
	Date:01/30-31/2016
REVIEW OF VOLATILE ORGATINE The following guidelines for evaluating volatile organics was actions. This document will assist the reviewer in using producision and in better serving the needs of the data users. The USEPA data validation guidance documents in the follow "Compendium Method TO-15. Determination of Volatile Organizers and Analyzed By Gas Chelling January, 1999"; USEPA Hazardous Waste Support Branca Analysis of Ambient Air in Canisters by Method TO-15, (SOF QC criteria and data validation actions listed on the data revided document, unless otherwise noted. The hardcopied (laboratory name) _EurofinsAir_Toxics_reviewed and the quality control and performance data summaters.	vere created to delineate required validation of of the sample results were assessed according to ving order of precedence: QC criteria from ganic Compounds (VOCs) In Air Collected In romatography/Mass Spectrometry (GC/MS), ch. Validating Air Samples. Volatile Organic P # HW-31. Revision #4. October, 2006). The ew worksheets are from the primary guidance data package received has been
Lab. Project/SDG No.:1602029	Sample matrix:Air
No. of Samples:	B30-4SSV013116/B30-4DSSV013116 X Laboratory Control SpikesX_ Field DuplicatesX_ CalibrationsX_ Compound IdentificationsX_ Compound QuantitationX_ Quantitation Limits
Definition of Qualifiers: J- Estimated results	
U- Compound not detected	
R- Rejected data	
UJ- Estimated nondetect	
Reviewer: afaul afaut Date:	

DATA COMPLETENESS

MISSING INFORMATION	DATE LAB. CONTACTED	DATE RECEIVED
4.		
-		
AN .		
3 1075 09		
	-	
		<u> </u>

All criteria were metX
Criteria were not met
and/or see below

HOLDING TIMES

The objective of this parameter is to ascertain the validity of the results based on the holding time of the sample from time of collection to the time of analysis.

Complete table for all samples and note the analysis and/or preservation not within criteria

SAMPLE ID	DATE SAMPLED	DATE ANALYZED	pН	ACTION
				2 20
	All samples analyzed w	l rithin the recommended	d method	holding time
			+	

Criteria

Aqueous samples – 14 days from sample collection for preserved samples (pH \leq 2, 4°C), no air bubbles.

Aqueous samples – 7 days from sample collection for unpreserved samples, 4°C, no air bubbles.

Soil samples- 7 days from sample collection.

Cooler temperature (Criteria: 4 + 2 °C): 2.8°C

Actions

If the VOCs vial(s) have air bubbles, estimate positive results (J) and reject nondetects (R). If the % solids of soil samples is 10-50%, estimates positive results (J) and nondetects (UJ)

If the % solid of soil samples is < 10%, estimate positive results (J) and reject nondetects (R).

If holding times are exceeded but < 14 days beyond criteria, estimate positive results (J) and nondetects (UJ).

If holding times are exceeded but < 28 days beyond criteria, estimate positive results (J) and reject nondetects (R).

If holding times are grossly exceeded (> 28 days beyond criteria), reject all results (R).

If samples were not iced or if the ice were melted (> 10°C), estimate positive results (J) and nondetects (UJ).

		Criteria	All criteria were metX a were not met see below
GC/MS TUNING			
The assessment of standard tuning Q		determine if the sample instrum	entation is within the
_XThe BFB	performance results were i	reviewed and found to be within th	e specified criteria.
_X BFB tunin	g was performed for every	24 hours of sample analysis.	
if no, use profess qualified or rejecte		ine whether the associated data	should be accepted,
List	the	samples	affected:

If mass calibration is in error, all associated data are rejected.

All criteria were met _X
Criteria were not met
and/or see below

CALIBRATION VERIFICATION

Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing and maintaining acceptable quantitative data.

Date of initial calibration:	01/14/16
Dates of continuing calibration	on:02/03/16
Instrument ID numbers:	MSD-18
Matrix/Level:	Air/low

DATE	LAB	FILE	CRITERIA OUT	COMPOUND	SAMPLES
	ID#		RFs, %RSD, %D, r		AFFECTED
					Initial calibration retention
			c requirements. Desorp quirements.	tion efficiency verifica	ation for Naphthalene 99.7
				tion efficiency verifica	ation for Naphthalene 99.7
				tion efficiency verifica	ation for Naphthalene 99.7
				tion efficiency verifica	ation for Naphthalene 99.7

Criteria

All RFs must be > 0.05 regardless of method requirements for SPCC.

All %RSD must be \leq 15 % regardless of method requirements for CCC.

All %Ds must be \leq 30% regardless of method requirements for CCC.

Method TO-15 does not specify criterion for the curve correlation coefficient (r). A limit for r of \geq 0.995 has therefore been utilized as professional judgment.

Actions

If any compound has an initial RF or a continuing RF of < 0.05, estimate positive results (J) and reject nondetects (R), regardless of method requirements.

If any compound has a %RSD > 15%, estimate positive results (J) and use professional judgment to qualify nondetects.

If any compound has a %RSD > 90%, estimate positive results (J) and reject nondetects (R).

If any compound has a % D > 30%, estimate positive results (J) and reject nondetects (R).

If any compound has a % D > 30%, estimate positive results (J) and nondetects (UJ).

If any compound has a % D > 90%, estimate positive results (J) and reject nondetects (R).

If any compound has r < 0.995, estimate positive results and nondetects.

A separate worksheet should be filled for each initial curve

All criteria were met _X
Criteria were not met
and/or see below

V A. BLANK ANALYSIS RESULTS (Sections 1 & 2)

The assessment of the blank analysis results is to determine the existence and magnitude of contamination problems. The criteria for evaluation of blanks apply only to blanks associated with the samples, including trip, equipment, and laboratory blanks. If problems with any blanks exist, all data associated with the case must be carefully evaluated to determine whether or not there is an inherent variability in the data for the case, or if the problem is an isolated occurrence not affecting other data.

List the contamination in the blanks below. High and low levels blanks must be treated separately.

Laboratory blanks

			COMPOUNDNaphthalene fic_criteria	CONCENTRATION UNITS0.94_ng
10.	Reporting limit 1.	<u> </u>		
DATE ANALYZED	LAB ID	LEVEL/ MATRIX	COMPOUND	CONCENTRATION UNITS
			_this_data_package	
	7-11			

All criteria were metX
Criteria were not met
and/or see below

VB. BLANK ANALYSIS RESULTS (Section 3)

Blank Actions

Action Levels (ALs) should be based upon the highest concentration of contaminant determined in any blank. Do not qualify any blank with another blank. The ALs for samples which have been diluted should be corrected for the sample dilution factor and/or % moisture, where applicable. No positive sample results should be reported unless the concentration of the compound in the samples exceeds the ALs:

ALs = 10x the amount of common contaminants (methylene chloride, acetone, 2-butanone, and toluene)

ALs = 5x for any other compounds

Specific actions are as follows:

If the concentration is < sample quantitation limit (SQL) and \le AL, report the compound as not detected (U) at the SQL.

If the concentration is \geq SQL but \leq AL, report the compound as not detected (U) at the reported concentration.

If the concentration is \geq SQL and > AL, report the concentration unqualified.

Notes:

High and low level blanks must be treated separately

Compounds qualified "U" for blank contamination are still considered "hits" when qualifying for calibration criteria.

CONTAMINATION SOURCE/LEVEL	COMPOUND	CONC/UNITS	AL/UNITS	SQL	AFFECTED SAMPLES
					100
					AND DESCRIPTION OF THE PERSON
				Section 1	
			-01200		
		1000			
	-150				
	ALL SUPPLIES OF THE PARTY OF TH				

All criteria were met _	Χ
Criteria were not met	
and/or see below	100

SURROGATE SPIKE RECOVERIES

Laboratory performance of individual samples is established by evaluation of surrogate spike recoveries. All samples are spiked with surrogate compounds prior to sample analysis. The accuracy of the analysis is measured by the surrogate percent recovery. Since the effects of the sample matrix are frequently outside the control of the laboratory and may present relatively unique problems, the validation of data is frequently subjective and demands analytical experience and professional judgment.

List the percent recoveries (%Rs) which do not meet the criteria for surrogate recovery. Matrix: solid/aqueous

SAMPLE ID

SURROGATE COMPOUND

ACTION

1.2-DICHLOROETHANE**d4**

Toluene-4-BFB

d8

_Surrogate_recoveries_within_laboratory_control_limits					
QC Limits* (Air)					
LL_to_UL70to_130	_70to_13070to_130				

- QC limits are laboratory in-house performance criteria, LL = lower limit, UL = upper limit.
- If QC limits are not available, use limits of 80 120 % for aqueous and 70 130 % for solid samples.

Actions:

QUALITY	%R < 10%	%R = 10% - LL	%R > UL
Positive results	J	J	J
Nondetects results	R	UJ	Accept

Surrogate action should be applied:

If one or more surrogate in the VOC fraction is out of specification, but has a recovery of > 10%.

If any one surrogate in a fraction shows < 10 % recovery.

All criteria were met
Criteria were not met
and/or see belowN/A

VII. A MATRIX SPIKE/MATRIX SPIKE DUPLICATE (MS/MSD)

This data is generated to determine long term precision and accuracy in the analytical method for various matrices. This data alone cannot be used to evaluate the precision and accuracy of individual samples. If any % R in the MS or MSD falls outside the designated range, the reviewer should determine if there are matrix effects, i.e. LCS data are within the QC limits but MS/MSD data are outside QC limit.

1. MS/MSD Recoveries and Precision Criteria

The laboratory should use one MS and a duplicate analysis of an unspiked field sample if target analytes are expected in the sample. If target analytes are not expected, MS/MSD should be analyzed.

CTION
d_to_assess

* If QC limits are not available, use limits of 70 – 130 %.

Actions:

QUALITY	%R < LL	%R > UL
Positive results	J	J
Nondetects results	R	Accept

MS/MSD criteria apply only to the unspiked sample, its dilutions, and the associated MS/MSD samples:

If the % R for the affected compounds were < LL (or 70 %), qualify positive results (J) and nondetects (UJ).

If the % R for the affected compounds were > UL (or 130 %), only qualify positive results (J).

If 25 % or more of all MS/MSD %R were < LL (or 70 %) or if two or more MS/MSD %Rs were < 10%, qualify all positive results (J) and reject nondetects (R).

A separate worksheet should be used for each MS/MSD pair.

All criteria were met _____ Criteria were not met and/or see below __N/A___

VII. B MATRIX SPIKE/MATRIX SPIKE DUPLICATE

MS/MSD - Unspiked Compounds

It should be noted that Method TO-15 does not specify a MS/MSD criteria for the unspiked compounds in the sample. A %RSD of < 50% has therefore been utilized as professional judgment.

If all target analytes were spiked in the MS/MSD, this review element is not applicable.

List the %RSD of the compounds which do not meet the criteria.

Sample ID:			Matrix/Le	vel/Unit	
COMPOUND	SAMPLE CONC.	MS CONC.	MSD CONC.	% RSD	ACTION
			- 1111	ASS. CO.	
25 E S E S E S E S E S E S E S E S E S E					

Actions:

^{*} If the % RSD > 50, qualify the positive result in the unspiked samples as estimated (J).

^{*} If the % RSD is not calculated (NC) due to nondetected value, use professional judgment to qualify the data.

All criteria were met _	X
Criteria were not met	
and/or see below	

VIII. LABORATORY CONTROL SAMPLE (LCS) ANALYSIS

This data is generated to determine accuracy of the analytical method for various matrices.

1. LCS Recoveries Criteria

Where LCS spiked with the same analyte at the same concentrations as the MS/MSD? Yes or No. If no make note in data review memo.

List the %R of compounds which do not meet the criteria

LCS ID	COMPOUND	% R	QC LIMIT

			RPD_
			200 A 1996
1/2/20	A. 10000	- 2.3.00	

- * QC limits are laboratory in-house performance criteria, LL = lower limit, UL = upper limit
- * If QC limits are not available, use limits of 70 130 %.

Actions:

QUALITY	%R < LL	%R > UL
Positive results	J	J
Nondetects results	R	Accept

All analytes in the associated sample results are qualified for the following criteria.

If 25 % of the LCS recoveries were < LL (or 70 %), qualify all positive results (j) and reject nondetects (R).

If two or more LCS were below 10 %, qualify all positive results as (J) and reject nondetects (R).

2. Frequency Criteria:

Where LCS analyzed at the required frequency and for each matrix? Yes or <u>No</u>. If no, the data may be affected. Use professional judgment to determine the severity of the effect and qualify data accordingly. Discuss any actions below and list the samples affected.

DATA REVIEW WORKSHEETS

			All criteria were metX Criteria were not met and/or see below
IX.	LABORATOR	Y/FIELD DUPLICATE PRECISION	
	Sample IDs: Sample IDs:	_ B30-4IA013016/B30-4IAD013016 _ B30-4SSV013116/B30-4DSSV013116_	Matrix:Air Matrix:Air

Field duplicates samples may be taken and analyzed as an indication of overall precision. These analyses measure both field and lab precision; therefore, the results may have more variability than laboratory duplicates which only laboratory performance. It is also expected that soil duplicate results will have a greater variance than water matrices due to difficulties associated with collecting identical field duplicate samples.

The project QAPP should be reviewed for project-specific information.

Suggested criteria: RPD ± 25% for air samples. If both samples and duplicate are <5 SQL, the RPD criteria is doubled.

COMPOUND	SQL	SAMPLE CONC.	DUPLICATE CONC.	RPD	ACTION
	RPD	within the me	thod performand	e criteria	

Actions:

Qualify as estimated positive results (J) and nondetects (UJ) for the compound that exceeded the above criteria. For organics, only the sample and duplicate will be qualified.

If an RPD cannot be calculated because one or both of the sample results is not detected, the following actions apply:

If one sample result is not detected and the other is greater than 5x the SQL qualify (J/UJ).

If one sample value is not detected and the other is greater than 5x the SQL and the SQLs for the sample and duplicate are significantly different, use professional judgment to determine if qualification is appropriate.

If one sample value is not detected and the other is less than 5x, use professional judgment to determine if qualification is appropriate.

If both sample and duplicate results are not detected, no action is needed.

All criteria were met _X
Criteria were not met
and/or see below

X. INTERNAL STANDARD PERFORMANCE

The assessment of the internal standard (IS) parameter is used to assist the data reviewer in determining the condition of the analytical instrumentation.

List the internal standard area of samples which do not meet the criteria.

- * Area of +40% or -40% of the IS area in the associated calibration standard.
- * Retention time (RT) within \pm 0.06 seconds of the IS area in the associated calibration standard.

DATE	SAMPLE ID	IS OUT	IS AREA	ACCEPTABLE RANGE	ACTION
	andard_area_and_reation_standards				_both_samples
Actions:					

1. IS actions should be applied to the compound quantitated with the out-of-control ISs

QUALITY	IS AREA < -40%	IS AREA > + 40%
Positive results	J	J
Nondetected results	R	ACCEPT

 If a IS retention time varies more than 0.330 seconds, the chromatographic profile for that sample must be examined to determine if any false positive or negative exists. For shifts of a large magnitude, the reviewer may consider partial or total rejection of the data for the sample fraction.

DATA REVIEW WORKSHEETS

All criteria were met_	X_
Criteria were not met	
and/or see below	355

XII. SAMPLE QUANTITATION

The sample quantitation evaluation is to verify laboratory quantitation results. In the space below, please show a minimum of one sample calculation:

1602029-05A

Naphthalene

RF = 1.45402

[] = (43634)(36)/(428005)(1.45402)

= 2.52412 ng OK

	Project Number:1602029
	Date:01/30-31/2016
REVIEW OF VOLATILE ORGANIC The following guidelines for evaluating volatile organics were actions. This document will assist the reviewer in using profession and in better serving the needs of the data users. The USEPA data validation guidance documents in the following "Compendium Method TO-15. Determination of Volatile Organic Specially-Prepared Canisters and Analyzed By Gas Chromatoly January, 1999"; USEPA Hazardous Waste Support Branch Analysis of Ambient Air in Canisters by Method TO-15, (SOP and Cariteria and data validation actions listed on the data review document, unless otherwise noted. The hardcopied (laboratory name) _EurofinsAir_Toxicsreviewed and the quality control and performance data summariant.	re created to delineate required validation fessional judgment to make more informed a sample results were assessed according to ag order of precedence: QC criteria from nic Compounds (VOCs) In Air Collected In smatography/Mass Spectrometry (GC/MS), Validating Air Samples. Volatile Organic HW-31. Revision #4. October, 2006). The w worksheets are from the primary guidance data package received has been
Lab. Project/SDG No.:1602029	Sample matrix:Air
No. of Samples:1	
X Holding Times X GC/MS Tuning	X Laboratory Control SpikesX Field DuplicatesX CalibrationsX Compound IdentificationsX Compound QuantitationX Quantitation Limits
Definition of Qualifiers: J- Estimated results U- Compound not detected R- Rejected data UJ- Estimated nondetect Reviewer: Date: 02/25/2016	

DATA COMPLETENESS

MISSING INFORMATION	DATE LAB. CONTACTED	DATE RECEIVED
4		
		
	<u> </u>	
		
	76.	
	16.	
1270387		
-		
	<u> </u>	
<u> </u>		

All criteria were met _	Х_	
Criteria were not met		
and/or see below		

HOLDING TIMES

The objective of this parameter is to ascertain the validity of the results based on the holding time of the sample from time of collection to the time of analysis.

Complete table for all samples and note the analysis and/or preservation not within criteria

SAMPLE ID	DATE SAMPLED	DATE ANALYZED	pН	ACTION
	Ali samples analyzed w	rithin the recommended	l method	holding time

<u>Criteria</u>

Aqueous samples – 14 days from sample collection for preserved samples (pH \leq 2, 4°C), no air bubbles.

Aqueous samples – 7 days from sample collection for unpreserved samples, 4°C, no air bubbles.

Soil samples- 7 days from sample collection.

Cooler temperature (Criteria: 4 ± 2 °C): 2.8°C

Actions

If the VOCs vial(s) have air bubbles, estimate positive results (J) and reject nondetects (R).

If the % solids of soil samples is 10-50%, estimates positive results (J) and nondetects (UJ)

If the % solid of soil samples is < 10%, estimate positive results (J) and reject nondetects (R).

If holding times are exceeded but < 14 days beyond criteria, estimate positive results (J) and nondetects (UJ).

If holding times are exceeded but < 28 days beyond criteria, estimate positive results (J) and reject nondetects (R).

If holding times are grossly exceeded (> 28 days beyond criteria), reject all results (R).

If samples were not iced or if the ice were melted (> 10°C), estimate positive results (J) and nondetects (UJ).

All criteria were metX Criteria were not met see below

GC/MS TUNING

List	the	samples	affected:
If no, use profession qualified or rejected		mine whether the associated data s	should be accepted,
XBFB tuning	was performed for eve	ery 24 hours of sample analysis.	
_X The BFB pa	erformance results were	e reviewed and found to be within the	specified criteria.
The assessment of standard tuning QC		to determine if the sample instrume	ntation is within the

If mass calibration is in error, all associated data are rejected.

All criteria were metX
Criteria were not met
and/or see below

CALIBRATION VERIFICATION

Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing and maintaining acceptable quantitative data.

Date of initial calibration:	11/20/15
Dates of continuing calibration	:02/04/16
instrument ID numbers:M	ISD-18
Matrix/Level:	Air/low

DATE	LAB	FILE	CRITERIA OUT	COMPOUND	SAMPLES
	ID#		RFs, %RSD, %D, r		AFFECTED
					· ·
Initial and	continuir	ng calib	rations meet method s	oecific requirements. In	itial calibration retention
umes mee	t metnoa	specmo	requirements.		
umes mee	t metnoa	specmo	requirements.		
umes mee	t metnoa	specmo	requirements.		
umes mee	t metnoa	<u>specmc</u>	requirements.		
umes mee	t method	<u>specinc</u>	requirements.		

Criteria

All RFs must be > 0.05 regardless of method requirements for SPCC.

All %RSD must be ≤ 15 % regardless of method requirements for CCC.

All %Ds must be < 30% regardless of method requirements for CCC.

Method TO-15 does not specify criterion for the curve correlation coefficient (r). A limit for r of \geq 0.995 has therefore been utilized as professional judgment.

Actions

If any compound has an initial RF or a continuing RF of < 0.05, estimate positive results (J) and reject nondetects (R), regardless of method requirements.

If any compound has a %RSD > 15%, estimate positive results (J) and use professional judgment to qualify nondetects.

If any compound has a %RSD > 90%, estimate positive results (J) and reject nondetects (R).

If any compound has a % D > 30%, estimate positive results (J) and reject nondetects (R).

If any compound has a % D > 30%, estimate positive results (J) and nondetects (UJ).

If any compound has a % D > 90%, estimate positive results (J) and reject nondetects (R).

If any compound has r < 0.995, estimate positive results and nondetects.

A separate worksheet should be filled for each initial curve

All criteria were met _X
Criteria were not met
and/or see below

V A. BLANK ANALYSIS RESULTS (Sections 1 & 2)

The assessment of the blank analysis results is to determine the existence and magnitude of contamination problems. The criteria for evaluation of blanks apply only to blanks associated with the samples, including trip, equipment, and laboratory blanks. If problems with any blanks exist, all data associated with the case must be carefully evaluated to determine whether or not there is an inherent variability in the data for the case, or if the problem is an isolated occurrence not affecting other data.

List the contamination in the blanks below. High and low levels blanks must be treated separately.

Laboratory blanks

DATE ANALYZED	LAB ID	LEVEL/ MATRIX	COMPOUND	CONCENTRATION
	1602020_22B		Benzene	UNITS
0204710	1002023-225	all	Toluene	
All_metho	d_blank_meeth_m	nethod_speci	fic_criteria	
Note:	Concentration be	elow reporting	g limits; no action taken.	
Field/Equipmer	nt/Trip blank			
DATE ANALYZED	LAB ID	LEVEL/ MATRIX	COMPOUND	CONCENTRATION UNITS
No_field/trip/eq	uipment_blanks_a	nalyzed_with	ı_this_data_package	

All criteria were metX
Criteria were not met
and/or see below

VB. BLANK ANALYSIS RESULTS (Section 3)

Blank Actions

Action Levels (ALs) should be based upon the highest concentration of contaminant determined in any blank. Do not qualify any blank with another blank. The ALs for samples which have been diluted should be corrected for the sample dilution factor and/or % moisture, where applicable. No positive sample results should be reported unless the concentration of the compound in the samples exceeds the ALs:

ALs = 10x the amount of common contaminants (methylene chloride, acetone, 2-butanone, and toluene)

ALs = 5x for any other compounds

Specific actions are as follows:

If the concentration is < sample quantitation limit (SQL) and \le AL, report the compound as not detected (U) at the SQL.

If the concentration is \geq SQL but \leq AL, report the compound as not detected (U) at the reported concentration.

If the concentration is \geq SQL and > AL, report the concentration unqualified.

Notes:

High and low level blanks must be treated separately

Compounds qualified "U" for blank contamination are still considered "hits" when qualifying for calibration criteria.

CONTAMINATION SOURCE/LEVEL	COMPOUND	CONC/UNITS	AL/UNITS	SQL	AFFECTED SAMPLES
					44
					AND DESCRIPTION OF THE PERSON
				45000 P	
					-
		antid.	-		
200					_

All criteria were metX				
Criteria were not met				
and/or see below				

SURROGATE SPIKE RECOVERIES

Laboratory performance of individual samples is established by evaluation of surrogate spike recoveries. All samples are spiked with surrogate compounds prior to sample analysis. The accuracy of the analysis is measured by the surrogate percent recovery. Since the effects of the sample matrix are frequently outside the control of the laboratory and may present relatively unique problems, the validation of data is frequently subjective and demands analytical experience and professional judgment.

List the percent recoveries (%Rs) which do not meet the criteria for surrogate recovery. Matrix: solid/aqueous

SAMPLE ID

SURROGATE COMPOUND

ACTION

1,2-DICHLOROETHANE- Toluene- 4-BF d8

_Surrogate_recoveries_within_laboratory_control_limits					
QC Limits* (Air)		-			
LL_to_UL70to_130	_70to_13070to_130				

- * QC limits are laboratory in-house performance criteria, LL = lower limit, UL = upper limit.
- * If QC limits are not available, use limits of 80 120 % for aqueous and 70 130 % for solid samples.

Actions:

QUALITY	%R < 10%	%R = 10% - LL	%R > UL
Positive results	J	J	J
Nondetects results	R	UJ	Accept

Surrogate action should be applied:

If one or more surrogate in the VOC fraction is out of specification, but has a recovery of > 10%.

If any one surrogate in a fraction shows < 10 % recovery.

All criteria were met	
Criteria were not met	
and/or see belowN/A	

VII. A MATRIX SPIKE/MATRIX SPIKE DUPLICATE (MS/MSD)

This data is generated to determine long term precision and accuracy in the analytical method for various matrices. This data alone cannot be used to evaluate the precision and accuracy of individual samples. If any % R in the MS or MSD falls outside the designated range, the reviewer should determine if there are matrix effects, i.e. LCS data are within the QC limits but MS/MSD data are outside QC limit.

MS/MSD Recoveries and Precision Criteria

The laboratory should use one MS and a duplicate analysis of an unspiked field sample if target analytes are expected in the sample. If target analytes are not expected, MS/MSD should be analyzed.

S OR MSD	COMPOUND	% R	RPD	QC LIMITS	ACTION
	_are_not_required_as	*		•	ike_used_to_assess

Actions:

QUALITY	%R < LL	%R > UL
Positive results	J	J
Nondetects results	R	Accept

MS/MSD criteria apply only to the unspiked sample, its dilutions, and the associated MS/MSD samples:

If the % R for the affected compounds were < LL (or 70 %), qualify positive results (J) and nondetects (UJ).

If the % R for the affected compounds were > UL (or 130 %), only qualify positive results (J).

If 25 % or more of all MS/MSD %R were < LL (or 70 %) or if two or more MS/MSD %Rs were < 10%, qualify all positive results (J) and reject nondetects (R).

A separate worksheet should be used for each MS/MSD pair.

All criteria were met _____ Criteria were not met and/or see below __N/A___

VII. B MATRIX SPIKE/MATRIX SPIKE DUPLICATE

MS/MSD - Unspiked Compounds

It should be noted that Method TO-15 does not specify a MS/MSD criteria for the unspiked compounds in the sample. A %RSD of < 50% has therefore been utilized as professional judgment.

If all target analytes were spiked in the MS/MSD, this review element is not applicable.

List the %RSD of the compounds which do not meet the criteria.

Sample ID:			Matrix/Level/Unit:		
COMPOUND	SAMPLE CONC.	MS CONC.	MSD CONC.	% RSD	ACTION
				A STATE OF THE PARTY OF THE PAR	
Sun cornel account to a			STATE OF THE PARTY		
ALIENSE DE LA CONTRACTOR DE LA CONTRACTO					
1820					

Actions:

^{*} If the % RSD > 50, qualify the positive result in the unspiked samples as estimated (J).

 $^{^{\}ast}$ If the % RSD is not calculated (NC) due to nondetected value, use professional judgment to qualify the data.

All criteria were metX	
Criteria were not met	
and/or see below	

VIII. LABORATORY CONTROL SAMPLE (LCS) ANALYSIS

This data is generated to determine accuracy of the analytical method for various matrices.

1. LCS Recoveries Criteria

Where LCS spiked with the same analyte at the same concentrations as the MS/MSD? Yes or No. If no make note in data review memo.

List the %R of compounds which do not meet the criteria

	FC2 ID	COMPOUND	% R	QC LIMIT
LCS/LCS	SD_(Blank_spike	e)_analyzed_in_this_data_; l_limits	oackage;_%_recoverie	es_and_RPD
wid iiii_iai				

- * QC limits are laboratory in-house performance criteria, LL = lower limit, UL = upper limit.
- * If QC limits are not available, use limits of 70 130 %.

Actions:

QUALITY	%R < LL	%R > UL
Positive results	J	J
Nondetects results	R	Accept

All analytes in the associated sample results are qualified for the following criteria.

If 25 % of the LCS recoveries were < LL (or 70 %), qualify all positive results (j) and reject nondetects (R).

If two or more LCS were below 10 %, qualify all positive results as (J) and reject nondetects (R).

2. Frequency Criteria:

Where LCS analyzed at the required frequency and for each matrix? Yes or <u>No</u>. If no, the data may be affected. Use professional judgment to determine the severity of the effect and qualify data accordingly. Discuss any actions below and list the samples affected.

		All criteria were metX Criteria were not met and/or see below	
IX.	LABORATORY/FIELD DUPLICATE PRECISION		
	Sample IDs:	Matrix:Air	

Field duplicates samples may be taken and analyzed as an indication of overall precision. These analyses measure both field and lab precision; therefore, the results may have more variability than laboratory duplicates which only laboratory performance. It is also expected that soil duplicate results will have a greater variance than water matrices due to difficulties associated with collecting identical field duplicate samples.

The project QAPP should be reviewed for project-specific information.

Suggested criteria: RPD ± 25% for air samples. If both samples and duplicate are <5 SQL, the RPD criteria is doubled.

COMPOUND	SQL	SAMPLE CONC.	DUPLICATE CONC.	RPD	ACTION
No field/laboratory d			s data package. e method perfor		SD results utilized to assess

Actions:

Qualify as estimated positive results (J) and nondetects (UJ) for the compound that exceeded the above criteria. For organics, only the sample and duplicate will be qualified.

If an RPD cannot be calculated because one or both of the sample results is not detected, the following actions apply:

If one sample result is not detected and the other is greater than 5x the SQL qualify (J/UJ).

If one sample value is not detected and the other is greater than 5x the SQL and the SQLs for the sample and duplicate are significantly different, use professional judgment to determine if qualification is appropriate.

If one sample value is not detected and the other is less than 5x, use professional judgment to determine if qualification is appropriate.

If both sample and duplicate results are not detected, no action is needed.

All criteria were metX
Criteria were not met
and/or see below

X. INTERNAL STANDARD PERFORMANCE

The assessment of the internal standard (IS) parameter is used to assist the data reviewer in determining the condition of the analytical instrumentation.

List the internal standard area of samples which do not meet the criteria.

- * Area of +40% or -40% of the IS area in the associated calibration standard.
- * Retention time (RT) within ± 0.06 seconds of the IS area in the associated calibration standard.

DATE	SAMPLE ID	IS OUT	IS AREA	ACCEPTABLE RANGE	ACTION
	tandard_area_and_re ration_standards				
			Ж		
Actions:					

1. IS actions should be applied to the compound quantitated with the out-of-control ISs

QUALITY	IS AREA < -40%	IS AREA > +40%
Positive results	J	J
Nondetected results	R	ACCEPT

2. If a IS retention time varies more than 0.330 seconds, the chromatographic profile for that sample must be examined to determine if any false positive or negative exists. For shifts of a large magnitude, the reviewer may consider partial or total rejection of the data for the sample fraction.

All criteria were metX
Criteria were not met
and/or see below

XII. SAMPLE QUANTITATION

The sample quantitation evaluation is to verify laboratory quantitation results. In the space below, please show a minimum of one sample calculation:

1602029-13A

Hexane

RF = 0.69128

[] = (2299995)(26)/(67035)(0.69128)

= 1290.5 ng OK

All criteria were met _X
Criteria were not met
and/or see below

XII.	OLIZ	NTIT	ΆΤΙΟ	I M	IMIT	2:
/\II.	WU	ווודע	Δ	/I T I	-HAH F	u

A. Dilution performed

SAMPLE ID	DILUTION FACTOR	REASONS FOR DILUTION
No dilution per		
The state of the s		
STORY .		

3.	Percent Solids				
	List samples which have ≤ 50 % solids				

Actions:

If the % solids of a soil sample is 10-50%, estimate positive results (J) and nondetects (UJ) If the % solids of a soil sample is < 10%, estimate positive results (J) and reject nondetects (R)